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Aggregate Rollover Coverage: 

A First-Best Solution for the Package-Shipping Industry 
 

 

ABSTRACT 

When specifying a new coverage option, underwriters must assess its viability with 

respect to profitability, consumer demand, and regulatory consent. This article specifies a 

new coverage option for clients of the package-shipping industry, who face transit risks 

of loss, damage, and delay. Currently, shipping companies and third-party insurers offer 

pay-as-you-go coverage options under per-claim deductible schemes, which tend to 

attract “low-volume” clients who suffer fluctuating losses. However, there are no 

standard coverage options for high-volume clients who find it cheaper to self-insure 

because their loss experience converges toward its asymptotic properties. In theory, 

aggregate deductibles offer an efficient alternative to self-insurance. In practice, however, 

aggregate deductible schemes are actuarially intractable because underwriters rarely 

know the precise number of shipments to be insured under a period of performance. This 

article introduces a “rollover” scheme that allows for aggregate deductibles, derives the 

conditions for a first-best solution, and describes the economic surplus created by the 

scheme.  

JEL Classifications: D81; G22 

Keywords: transit insurance, aggregate deductible, loss aversion 

1. Introduction 

Package-shipping contracts specify a schedule of rates and fees, which are applied on 

a per-package basis according to the characteristics of the package itself (e.g. size, weight, 

contents, etc.) and the conditions for its shipment (e.g. distance, time-in-transit, etc.). 

Such schedules can also include fees to cover clients’ losses in the event of loss-of-

package, physical damage to contents, or delay-in-shipment. Current standards for 

coverage in shipping contracts specify per-package coverage limits and per-package 

deductibles, but not aggregate deductibles. The findings of Eeckhoudt et al (1991) 

suggest that, under a scheme of constant per-package deductibles, the consumer demand 

for coverage decreases as the number of packages shipped by the client under the contract 

increases. Thus, high-volume clients will tend to self-insure. Li and Lui (2003) refer to 
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self-insurance as a third-best solution. They describe a second-best solution consisting of 

decreasing per-claim deductibles, which is applicable when each claim-payment can be 

calculated with respect to prior losses. 

Arrow (1974) showed that a single aggregate deductible provides a first-best solution 

for contracts of multiple potential claims. Yet, aggregate deductible options are absent in 

the small-package shipping industry, where multiple claims are common for high-volume 

clients. This observation seems to suggest that there are practical disadvantages to 

aggregate deductibles.  

Cohen (2002) suggests two disadvantages of aggregate deductibles to explain their 

“conspicuous” absence in automobile insurance policies. He first describes how 

verification (adjustment) costs can be higher under aggregate deductibles versus per-loss 

deductibles. He reasons that customers are less likely to file small claims under per-loss 

deductibles, whereas aggregate deductibles encourage customers to file all claims in 

order to increase the likelihood of achieving their aggregate deductible and thereby 

collecting any losses in excess of the deductible. Cohen predicates his analysis on the 

assumption that small losses are more likely than large ones, which we accept as true for 

both automobile and package coverage. His assumption supports his analysis of 

automobile insurance policies, which provide blanket coverage for both small and large 

losses that occur over the period-of-performance, but his assumption does not apply to 

package contracts. Specifically, under package contracts, the client is generally required 

to declare the value of each package, and premiums are assessed on each package based 

on its declared value. Under this scheme, any customer not intending to file a claim in the 

event of loss of a package has a negative incentive to purchase coverage on that package 

in the first place, so we would not expect a customer’s tendency to file a claim to be 
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lower under a per-package deductible than under an aggregate deductible. Therefore, 

aggregate deductibles will not lead to higher verifications costs in the case of package 

contracts.  

Cohen identifies moral hazard as the second disadvantage to aggregate deductibles. 

He reasons that once a customer’s losses exceed the aggregate deductible, the customer 

will have little or no incentive to take precautions to avoid losses. For package shipments, 

however, client play essentially no role in preventing a package from being lost or 

delayed, and only a minor role if any in preventing physical damage. In the case of 

physical damage, clients can often use more expensive packing materials and containers 

to reduce the likelihood of loss. However, coverage contracts can specify minimum 

standards for packing materials and containers as a condition of coverage, thereby 

preventing clients from downgrading to cheaper packing materials once cumulative 

claims exceed the aggregate deductible. Thus, the moral-hazard argument has little or no 

relevance in explaining the absence of aggregate deductible options in package contracts. 

We submit that the primary difficulty prohibiting the use of aggregate deductibles in 

package contracts is actuarial in nature, and stems from the uncertainty regarding the 

number of package shipments to be covered under the period-of-performance. We 

overcome this actuarial difficultly be defining coverage in terms of “sequence-of-

performance,” which applies to a specified number of package shipments rather than a 

period of time. This modification allows the underwriter to derive a schedule of aggregate 

deductibles and corresponding lump-sum premiums. By introducing a rollover scheme, 

coverage can be reset from one sequence of packages to the next. The aggregate rollover 

coverage scheme requires only minor modifications to the underwriting and claims-

adjustment processes that already exist for handling per-package deductibles.  
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2. The Model 

We consider a risk of loss facing a sequence of package shipments: Ni ,...,2,1= . For 

simplicity, we assume that all packages have equal at-risk value 0>v . Each shipment is 

a Bernoulli trial facing risk of (full) loss with probability 0>p . The sequence of 

shipments results in a sequence of occurrences of loss: Kj ,...,2,1= , where NK ≤≤0 . 

The cumulative loss realized from such a sequence is vNvKL ≤≡ .  

Risk and the Uninsured Firm 

The expected cumulative loss without insurance is 

∑
=

=
N

i

iivLE
1

][ θ , (1) 

where ],|Pr[ NpiKi =≡θ . We allow that the firm facing the risks described above is 

capable of estimating its expected loss. In the absence of an insurance option, the firm 

has the option of setting aside loss capital to cover planned loss L̂ , where )ˆ0( vNL ≤≤ . 

Loss capital is allocated at a constant cost-of-capital rate )1 ,0(∈φ , resulting in an 

expense for planned loss L̂φ . Let )ˆ(LXX ≡  denote unplanned loss, given by  
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We reasonably assume that firms are loss averse due to indirect costs associated with 

unplanned loss. Specifically, firms face increasing liquidity constraints when covering the 

replacement costs or consequential losses arising from unanticipated damage or loss of 

merchandise. Firms can also face increasing penalties as unplanned losses drive earnings 

below forecasts. Let )ˆ|( LXCC ≡  denote indirect cost as a function of unplanned loss. 
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Our assumption of increasing liquidity constraints and penalties implies 0>′C . Our 

analysis requires no assumptions regarding C ′′ .  

For a planned loss L̂ , let vLj /ˆˆ ≡  denote the threshold number of occurrences 

demarcating planned and unplanned loss. Since iθ  denotes the probability of i  

occurrences from N packages, the expected indirect cost from excess loss is 
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The expected net final value of goods shipped without insurance is denoted by 0z  and 

given by 

)]ˆ|([ˆ][0 LXCELLEvNz −−−= φ . (4) 

The uninsured firm maximizes according to the first-order condition 

0
ˆ

)]ˆ|([

ˆ
0 ≡

∂

∂
−−=

∂

∂

L

LXCE

L

z
φ , which implies 

0
ˆ

)]ˆ|([
<−=

∂

∂
φ

L

LXCE
. (5) 

That is, the uninsured firm increases its allocation of loss capital until the incremental 

reduction in expected indirect cost is less than the incremental cost of capital.  

An Insurance Scheme 

We now introduce an insurance policy to cover N package shipments subject to an 

aggregate deductible D. The policy is provided to the insured for a lump-sum premium of 

P, and expires after shipment of the N
th
 package. The sequences of shipments results in a 

sequence of claims , ..., K, j 21= . Initially, each claim is applied to the deductible. Once 

the number of claims exceeds a threshold number of claims, given by vDd /≡ , all 



 6 

further claims are paid at full value v. That is, all claims dj ≤  are applied to the 

deductible, and all claims dj >  are paid in full.  

Revising equation (1) to account for the deductible provides the expected direct loss 

under insurance: 

∑∑
+==

+
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where ],|Pr[
1

NpdK
N

di

i >=∑
+=

θ . We also recognize that the insurance policy protects the 

insured from the indirect cost of losses that are both unplanned and in excess of the 

deductible. Thus, unplanned loss from equation (2) is redefined as ),ˆ( DLXX ≡  to 

account for the deductible, and is given by 
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It follows that the expected value of indirect costs under insurance is  
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The expected net final value of goods shipped under insurance is denoted by )(Dz  and 

given by 

)],ˆ|([ˆ)]([)( DLXCELDLEPvNDz −−−−= φ . (9) 

Let 0)( zDzz −≡∆  denote the insured’s net expected return from the insurance 

policy, given by  
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where ),ˆmax( dj=µ  and ∑
+=
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N

di

ivdiDIE
1

)()]([ θ  is the expected total indemnification 

to the insured under the policy.
1
 The insurer’s profit is premium minus indemnification 

and claims expense. Expected profit is  

][)]([][ GEDIEPE −−=π , (11) 

where ][GE  is the expected claims expense.  

The Optimal Deductible for the Insured 

By solving equation (11) for premium and substituting into equation (10), the 

insured’s net return can be expressed as  
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For simplification, we assume that the insurer’s expected profit is a constant. Therefore, 

the insured’s net return is a function of the deductible D and planned loss L̂ . The first-

order conditions for maximization of the insured’s net return are 
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which can be rewritten as 
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However, inspection of equation (12) reveals 

                                                 
1
 The appendix provides a proof of equation (10). 
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(15) 

By principles of convergence, the first-order conditions in equation (14) are satisfied if 

and only if jd ˆ= , which also means that LD ˆ= . That is, the firm optimizes by allocating 

loss capital equal to the amount of the deductible. Since ( ))(,,ˆˆ XCpLL φ≡  is determined 

by satisfying equation (5), the firm’s optimal aggregate deductible D̂  for the insurance 

policy is chosen accordingly: 

LD ˆˆ = . (16) 

Claims Expense and the Existence of a First-Best Insurance Solution 

Assuming the first-order conditions in equation (13) hold, a first-best premium *P  

exists if there exists a premium for equations (10) and (11) that satisfies both 0≥∆z  and 

0≥π . Those equations and the result that jd ˆ=  provide a feasibility interval for *P , 

given by 
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To derive a more precise feasibility condition, we introduce a load factor α , such 

that )]([)1( DIEP α+=  and therefore ** P⇔α . Substitution into equation (17) yields a 

feasibility interval for the load factor, given by 
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Hence, a first-best premium exists if the following feasibility condition is satisfied: 
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In summary, an insurance solution exists for any prospective insured whose expected 

indirect cost of unplanned loss exceeds the insurer’s expected claims expense. 

To better understand the role of claims expense, we assume that claims expense is a 

constant function
2
 ][][ KEgGE ⋅= , where g  denotes the average expense per claim. We 

also note that ][)]ˆ([ KEvDIE ⋅= . Substitution into equation (18) yields  

*α≤
v

g
, (20) 

where 
v

g
 is the expense-to-indemnification ratio. Equation (20) provides several key 

results. First, it reveals that the expense-to-indemnification ratio provides the underwriter 

with a lower bound for the load factor. Second, it reveals the obvious relationship that 

cheaper claims operations will allow for lower load factors, making first-best coverage 

feasible to firms with lower loss aversion. Third, it reveals the subtler relationship that 

load factors can be lower for firms who ship higher-valued packages. Thus, cheaper 

claims operations will make first-best coverage feasible to firms who ship lower-valued 

packages.  

                                                 
2
 We reasonably assume that claims associated with a single policy do not significantly impact the average 

cost in claims-adjustment operations, which typically service many insurance policies. 
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Claims Expense and Market Surplus 

To clarify the benefits in an economic sense, we note that the market surplus 

provided by the coverage contract is defined by summing the insured’s consumer surplus 

( z∆ ) and the insurer’s producer surplus (π ). From equations (10) and (11), the net 

combined consumer and producer surplus from enacting the policy is  

][)(        
1
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N

di
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i −
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Note that the market surplus will only be positive if the feasibility condition of equation 

(19) holds. So, equations (19) and (21) imply that a first-best premium exists and will 

create market surplus if claims-adjustment activity is cheaper than the indirect costs of 

unplanned losses.  

3. Implementation: Why a Rollover Scheme? 

Successful implementation of aggregate deductibles by the underwriter relies on 

precise knowledge of the number of packages covered under the policy. Since the client’s 

number of shipments typically fluctuates across any predefined time period, a period-of-

performance contract will not allow for the necessary precision. What is required is a 

sequence-of-coverage endorsement, whereby each sequence-of-coverage insures a 

sequence of N packages with aggregate deductible D. The coverage provider keeps a 

running total of accumulated claims for any sequence of N packages, and pays all losses 

in excess of D for that sequence. Upon completion of one sequence, the balance of 

accumulated claims is reset to zero, and a new sequence begins. That is, the endorsement 

“rolls over” from one sequence of packages to the next, independent from the contract’s 

performance period. 
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By defining a coverage contract in terms of estimable parameters, such as 

etc. ],[ , ,, LEgvp , the underwriter can devise a first-best premium *P , if one exists, for 

any choice of deductible D and sequence size N: ])[ , ,,|,( LEgvpNDPP = . To assist 

brokers in marketing coverage options to prospective clients, the underwriter can provide 

a schedule of viable policies ),,( NDP  for a range of D and N. If one or more solutions 

exist for a prospective client, then the client need only select the solution ),ˆ,( NDP  with 

the desired deductible D̂  and sequence size N. This approach would allow the client to 

readily determine which, if any, of a schedule of policy options is feasible and most 

desirable. 

4. Remarks 

Rollover of a sequence-of-performance endorsement can provide an easily 

implemented, economically efficient market solution for high-volume clients of the 

package-shipping industry. We have derived the conditions under which a solution exists 

for cases where the at-risk value per package is fixed and asymptotic properties are 

known to the underwriter. 

The assumption that the at-risk value is equal across all packages can be easily 

extended for a broad class of clients who ship finite types of items, each with its own at-

risk value. For example, consider a client who ships five different models of electronic 

equipment with five different at-risk values, and five different probabilities of occurrence 

of loss. In this case, a distinct sequence-of-coverage endorsement could be written for 

each model of equipment under one policy without actuarial difficulty. A more general 

extension to the current model would be required for cases in which at-risk values are not 

foreknown. 
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In cases where asymptotic properties are unknown or inadequately estimated, steps 

might be taken in implementation to facilitate the provision of rollover coverage. For 

example, if an underwriter is willing to select a priori estimates of asymptotic parameters 

to order to initiate coverage, then an endorsement might be written that allows parameters 

(such as the probability of occurrence of loss) to be updated and premiums to be adjusted 

with each rollover of the sequence-of-coverage. If a priori estimates are “close” to actual 

asymptotic properties, then clients will experience relatively small premium adjustments 

in the course of coverage and still be protected from potentially sizeable indirect costs of 

fluctuating losses. 

Appendix 

PROOF OF EQUATION (10): Equations (4) and (9) imply )]([][ DLELEz −=∆  
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